Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2308401121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446849

RESUMO

Generation of defined neuronal subtypes from human pluripotent stem cells remains a challenge. The proneural factor NGN2 has been shown to overcome experimental variability observed by morphogen-guided differentiation and directly converts pluripotent stem cells into neurons, but their cellular heterogeneity has not been investigated yet. Here, we found that NGN2 reproducibly produces three different kinds of excitatory neurons characterized by partial coactivation of other neurotransmitter programs. We explored two principle approaches to achieve more precise specification: prepatterning the chromatin landscape that NGN2 is exposed to and combining NGN2 with region-specific transcription factors. Unexpectedly, the chromatin context of regionalized neural progenitors only mildly altered genomic NGN2 binding and its transcriptional response and did not affect neurotransmitter specification. In contrast, coexpression of region-specific homeobox factors such as EMX1 resulted in drastic redistribution of NGN2 including recruitment to homeobox targets and resulted in glutamatergic neurons with silenced nonglutamatergic programs. These results provide the molecular basis for a blueprint for improved strategies for generating a plethora of defined neuronal subpopulations from pluripotent stem cells for therapeutic or disease-modeling purposes.


Assuntos
Genes Homeobox , Neurônios , Humanos , Cromatina , Neurotransmissores , Prosencéfalo
2.
Blood Cancer Discov ; : OF1-OF18, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261864

RESUMO

Rare preleukemic hematopoietic stem cells (pHSC) harboring only the initiating mutations can be detected at the time of acute myeloid leukemia (AML) diagnosis. pHSCs are the origin of leukemia and a potential reservoir for relapse. Using primary human samples and gene editing to model isocitrate dehydrogenase 1 (IDH1) mutant pHSCs, we show epigenetic, transcriptional, and metabolic differences between pHSCs and healthy hematopoietic stem cells (HSC). We confirm that IDH1-driven clonal hematopoiesis is associated with cytopenia, suggesting an inherent defect to fully reconstitute hematopoiesis. Despite giving rise to multilineage engraftment, IDH1-mutant pHSCs exhibited reduced proliferation, blocked differentiation, downregulation of MHC class II genes, and reprogramming of oxidative phosphorylation metabolism. Critically, inhibition of oxidative phosphorylation resulted in the complete eradication of IDH1-mutant pHSCs but not IDH2-mutant pHSCs or wild-type HSCs. Our results indicate that IDH1-mutant preleukemic clones can be targeted with complex I inhibitors, offering a potential strategy to prevent the development and relapse of leukemia. SIGNIFICANCE: A high burden of pHSCs is associated with worse overall survival in AML. Using single-cell sequencing, metabolic assessment, and gene-edited human models, we find human pHSCs with IDH1 mutations to be metabolically vulnerable and sensitive to eradication by complex I inhibition. See related commentary by Steensma.

3.
Environ Res ; 242: 117812, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042517

RESUMO

Developing efficient and effective photocatalysts is essential for organic dyes and antibiotic degradation in wastewater. Ni-doped α-Fe2O3/g-C3N4 (NFGCN) photocatalysts were synthesised through a simple co-precipitation technique and used for the ciprofloxacin (CIP) and methylene blue (MB) degradation through photocatalysis. The XRD data indicated the crystallinity of the synthesised iron oxide and its composites with rhombohedral structures with the nature of high purity. The morphology of the NFGCN composite revealed the construction of Ni-doped α-Fe2O3 (NFO) nanoparticles onto the g-C3N4 (GCN) sheet surface along with the close interface that induced a Z-scheme heterojunction. The synthesised photocatalysts showed photocatalytic activity with good degradation efficiency of 82.1 % and 92.0 % for CIP and MB, respectively, within 120 min under solar light exposure. The improved photocatalytic degradation efficiency was attained owing to the synthesised composite's enhanced light absorption in the visible range. The narrow band gap energies and interaction between Ni-doped α-Fe2O3 and g-C3N4 displayed by these materials result in enhanced visible light absorption, effective charge carrier separation and transportation to the pollutants. CIP degradation pathways were investigated utilising the LC-MS analysis. NFGCN composites showed good recyclability (5 cycles), magnetic retrievability, and stability for degrading organic and emerging pollutants from wastewater through photocatalysis.


Assuntos
Poluentes Ambientais , Compostos Férricos , Grafite , Nanocompostos , Compostos de Nitrogênio , Ciprofloxacina/química , Águas Residuárias , Luz , Nanocompostos/química
4.
J Pediatr ; 266: 113871, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38092087
5.
Biochem Biophys Res Commun ; 693: 149355, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38096617

RESUMO

Nardilysin (NRDC) is a multifunctional protein required for maintaining homeostasis in various cellular and tissue contexts. However, its role in hematopoietic stem cells (HSCs) remains unclear. Here, through the conditional deletion of NRDC in hematopoietic cells, we demonstrate that NRDC is required for HSCs expansion in vitro and the reconstitution of hematopoiesis in vivo after transplantation. We found NRDC-deficient HSCs lose their self-renewal ability and display a preferential bias to myeloid differentiation in response to replication stress. Transcriptome data analysis revealed the upregulation of heat shock response-related genes in NRDC-deficient HSCs. Additionally, we observed increased protein synthesis in cultured NRDC-deficient HSCs. Thus, loss of NRDC may cause the inability to control protein synthesis in response to replication induced protein stress, leading to the impaired HSC self-renewal ability. This highlights a novel model of action of NRDC specifically in HSCs.


Assuntos
Células-Tronco Hematopoéticas , Metaloendopeptidases , Células-Tronco Hematopoéticas/metabolismo , Metaloendopeptidases/metabolismo , Hematopoese/fisiologia , Regulação para Cima , Diferenciação Celular/genética
6.
Blood Cancer Discov ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091010

RESUMO

Rare preleukemic hematopoietic stem cells (pHSCs) harboring only the initiating mutations can be detected at the time of AML diagnosis. pHSCs are the origin of leukemia and a potential reservoir for relapse. Using primary human samples and gene-editing to model isocitrate dehydrogenase 1 (IDH1) mutant pHSCs, we show epigenetic, transcriptional, and metabolic differences between pHSCs and healthy hematopoietic stem cells (HSCs). We confirm that IDH1 driven clonal hematopoiesis is associated with cytopenia, suggesting an inherent defect to fully reconstitute hematopoiesis. Despite giving rise to multilineage engraftment, IDH1-mutant pHSCs exhibited reduced proliferation, blocked differentiation, downregulation of MHC Class II genes, and reprogramming of oxidative phosphorylation metabolism. Critically, inhibition of oxidative phosphorylation resulted in complete eradication of IDH1-mutant pHSCs but not IDH2-mutant pHSCs or wildtype HSCs. Our results indicate that IDH1-mutant preleukemic clones can be targeted with complex I inhibitors, offering a potential strategy to prevent development and relapse of leukemia.

7.
Neurol India ; 71(5): 980-983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929438

RESUMO

Background: Mental retardation, X-linked, syndromic, Houge type (MRXSHG) is a form of mental retardation characterized by intellectual disability, speech and language impairments, and early-onset seizures. It has been recently recorded in Online Mendelian Inheritance in Man (OMIM), and only 10 cases have been reported in the literature so far. Objective: To highlight the novel neuroimaging findings in the pediatric X-linked intellectual disability with a missense mutation of connector enhancer of kinase suppressor of RAS2 (CNKSR2) gene. Material and Methods: We present a case of intellectual disability, refractory epilepsy, speech and language delay with subtle dysmorphism, and behavioral issues in an 11-year-old boy with novel neuroimaging findings in a CNKSR2 gene with missense mutation. Results: Brain MRI revealed involvement of the basal ganglia, predominantly the neostriatum, and along with the subependymal aspects with focal cavitations involving, especially the bilateral caudate heads. There was relative sparing of the globus pallidi and posterior putamina bilaterally. Whole-exome sequencing identified a hemizygous missense pathogenic variant in the CNKSR2 gene. The mother was found to be an asymptomatic carrier. Conclusion: This case report highlights the rare missense mutation in the CNKSR2 gene and abnormal neuroimaging findings, which further provide information about the phenotypic characteristics of X-linked syndromic intellectual disability.


Assuntos
Deficiência Intelectual , Masculino , Humanos , Criança , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto , Fenótipo , Neuroimagem , Imageamento por Ressonância Magnética , Proteínas Adaptadoras de Transdução de Sinal/genética
8.
STAR Protoc ; 4(4): 102674, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37897731

RESUMO

Prospective isolation of defined cell types is critical for the functional study of stem cells, especially in primary human tissues. Here, we present a protocol for purifying 10 transcriptomically and functionally distinct neural stem and progenitor cell types from the developing human brain using fluorescence-activated cell sorting. We describe steps for tissue dissociation, staining, and cell sorting as well as downstream functional experiments for measuring clonogenicity, differentiation, and engraftment potential of purified populations. For complete details on the use and execution of this protocol, please refer to Liu et al. (2023).1.

9.
Heliyon ; 9(9): e19849, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809645

RESUMO

Objectives: The study aimed to assess the knowledge, attitude, and practice (KAP) of parents/caregivers toward epilepsy in paediatric patients at a tertiary care centre of North India. Methods: A cross sectional study was carried out among 418 parents or caregivers using convenience sampling technique with 16-item questionnaire in English language and also translated to local language that is Hindi. Children with epilepsy who visited the paediatric outpatient department within a year were included in the study (January 2021-22). A total of 450 children visited the clinic, 32 of whom were excluded for various reasons, and the final analysis was conducted among the 418 parents or caregivers who completed the questionnaire. Results: The male and female patients were 56.7% (n = 237) and 43.3% (n = 181) respectively. The age distribution of patients with less than 5 years, 6-10 years and more than 10 years were 35.6% (n = 149), 54.5% (n = 228), 9.8% (n = 41) respectively. Only one third of parents and caregivers did not consider epilepsy as psychiatric illness. Most of the parents and caregivers think that epilepsy affects school performance (77.2%) and hinders family life (71.0%). More than half of the parents or caregivers believes that the society discriminates against person with epilepsy and around 46.6% consider that alternative medicine can cure epilepsy. The parents or caregivers felt financial burden due to epilepsy was in 72.5% and approximately 78.5% perceived that their work is affected because of their child's epilepsy. Perception of epilepsy as a psychiatric illness was found to be significantly higher in parents with primary and secondary level education, when compared to parents who were graduates. The practice of the parents or caregivers towards administration of drugs to their child was good, however around 36.6% (n = 153) missed the dose of anti-seizure medications. Conclusion: The study highlights the substantial knowledge, attitude and practice gap amongst parents and caregivers for children with epilepsy which indirectly has huge impact on the management of epilepsy. Thus it becomes utmost important to educate the family as well as the community regarding epilepsy which will help in improving the therapeutic outcomes, overall quality of life and interpersonal and social relationships of these children.

11.
Res Sq ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37461629

RESUMO

Acoustic simulations have played a prominent role in the development of speech processing and sound coding strategies for auditory neural implant devices. Traditionally evaluated using human subjects, acoustic simulations have been used to model the impact of implant signal processing as well as individual anatomy/physiology on speech perception. However, human subject testing is time-consuming, costly, and subject to individual variability. In this study, we propose a novel approach to perform simulations of auditory implants. Rather than using actual human participants, we utilized an advanced deep-learning speech recognition model to simulate the effects of some important signal processing as well as psychophysical/physiological factors on speech perception. Several simulation conditions were produced by varying number of spectral bands, input frequency range, envelope cut-off frequency, envelope dynamic range and envelope quantization. Our results demonstrate that the deep-learning model exhibits human-like robustness to simulation parameters in quiet and noise, closely resembling existing human subject results. This approach is not only significantly quicker and less expensive than traditional human studies, but it also eliminates individual human variables such as attention and learning. Our findings pave the way for efficient and accurate evaluation of auditory implant simulations, aiding the future development of auditory neural prosthesis technologies.

12.
Nature ; 619(7971): 860-867, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468622

RESUMO

Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.


Assuntos
Adenocarcinoma de Pulmão , Reprogramação Celular , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Células-Tronco , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Reprogramação Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
13.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292787

RESUMO

Vocoder simulations have played a crucial role in the development of sound coding and speech processing techniques for auditory implant devices. Vocoders have been extensively used to model the effects of implant signal processing as well as individual anatomy and physiology on speech perception of implant users. Traditionally, such simulations have been conducted on human subjects, which can be time-consuming and costly. In addition, perception of vocoded speech varies significantly across individual subjects, and can be significantly affected by small amounts of familiarization or exposure to vocoded sounds. In this study, we propose a novel method that differs from traditional vocoder studies. Rather than using actual human participants, we use a speech recognition model to examine the influence of vocoder-simulated cochlear implant processing on speech perception. We used the OpenAI Whisper, a recently developed advanced open-source deep learning speech recognition model. The Whisper model's performance was evaluated on vocoded words and sentences in both quiet and noisy conditions with respect to several vocoder parameters such as number of spectral bands, input frequency range, envelope cut-off frequency, envelope dynamic range, and number of discriminable envelope steps. Our results indicate that the Whisper model exhibited human-like robustness to vocoder simulations, with performance closely mirroring that of human subjects in response to modifications in vocoder parameters. Furthermore, this proposed method has the advantage of being far less expensive and quicker than traditional human studies, while also being free from inter-individual variability in learning abilities, cognitive factors, and attentional states. Our study demonstrates the potential of employing advanced deep learning models of speech recognition in auditory prosthesis research.

14.
Nat Protoc ; 18(7): 2256-2282, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37316563

RESUMO

Human skeletal stem cells (hSSCs) hold tremendous therapeutic potential for developing new clinical strategies to effectively combat congenital and age-related musculoskeletal disorders. Unfortunately, refined methodologies for the proper isolation of bona fide hSSCs and the development of functional assays that accurately recapitulate their physiology within the skeleton have been lacking. Bone marrow-derived mesenchymal stromal cells (BMSCs), commonly used to describe the source of precursors for osteoblasts, chondrocytes, adipocytes and stroma, have held great promise as the basis of various approaches for cell therapy. However, the reproducibility and clinical efficacy of these attempts have been obscured by the heterogeneous nature of BMSCs due to their isolation by plastic adherence techniques. To address these limitations, our group has refined the purity of individual progenitor populations that are encompassed by BMSCs by identifying defined populations of bona fide hSSCs and their downstream progenitors that strictly give rise to skeletally restricted cell lineages. Here, we describe an advanced flow cytometric approach that utilizes an extensive panel of eight cell surface markers to define hSSCs; bone, cartilage and stromal progenitors; and more differentiated unipotent subtypes, including an osteogenic subset and three chondroprogenitors. We provide detailed instructions for the FACS-based isolation of hSSCs from various tissue sources, in vitro and in vivo skeletogenic functional assays, human xenograft mouse models and single-cell RNA sequencing analysis. This application of hSSC isolation can be performed by any researcher with basic skills in biology and flow cytometry within 1-2 days. The downstream functional assays can be performed within a range of 1-2 months.


Assuntos
Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Linhagem da Célula , Reprodutibilidade dos Testes , Diferenciação Celular/fisiologia , Osso e Ossos , Células da Medula Óssea , Células Cultivadas
15.
Arterioscler Thromb Vasc Biol ; 43(7): 1262-1277, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37051932

RESUMO

BACKGROUND: Peripheral vascular disease remains a leading cause of vascular morbidity and mortality worldwide despite advances in medical and surgical therapy. Besides traditional approaches, which can only restore blood flow to native arteries, an alternative approach is to enhance the growth of new vessels, thereby facilitating the physiological response to ischemia. METHODS: The ActinCreER/R26VT2/GK3 Rainbow reporter mouse was used for unbiased in vivo survey of injury-responsive vasculogenic clonal formation. Prospective isolation and transplantation were used to determine vessel-forming capacity of different populations. Single-cell RNA-sequencing was used to characterize distinct vessel-forming populations and their interactions. RESULTS: Two populations of distinct vascular stem/progenitor cells (VSPCs) were identified from adipose-derived mesenchymal stromal cells: VSPC1 is CD45-Ter119-Tie2+PDGFRa-CD31+CD105highSca1low, which gives rise to stunted vessels (incomplete tubular structures) in a transplant setting, and VSPC2 which is CD45-Ter119-Tie2+PDGFRa+CD31-CD105lowSca1high and forms stunted vessels and fat. Interestingly, cotransplantation of VSPC1 and VSPC2 is required to form functional vessels that improve perfusion in the mouse hindlimb ischemia model. Similarly, VSPC1 and VSPC2 populations isolated from human adipose tissue could rescue the ischemic condition in mice. CONCLUSIONS: These findings suggest that autologous cotransplantation of synergistic VSPCs from nonessential adipose tissue can promote neovascularization and represents a promising treatment for ischemic disease.


Assuntos
Células-Tronco Mesenquimais , Neovascularização Fisiológica , Camundongos , Humanos , Animais , Neovascularização Fisiológica/fisiologia , Tecido Adiposo , Neovascularização Patológica , Isquemia/terapia , Modelos Animais de Doenças , Membro Posterior/irrigação sanguínea
16.
Cell ; 186(6): 1179-1194.e15, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931245

RESUMO

The human brain undergoes rapid development at mid-gestation from a pool of neural stem and progenitor cells (NSPCs) that give rise to the neurons, oligodendrocytes, and astrocytes of the mature brain. Functional study of these cell types has been hampered by a lack of precise purification methods. We describe a method for prospectively isolating ten distinct NSPC types from the developing human brain using cell-surface markers. CD24-THY1-/lo cells were enriched for radial glia, which robustly engrafted and differentiated into all three neural lineages in the mouse brain. THY1hi cells marked unipotent oligodendrocyte precursors committed to an oligodendroglial fate, and CD24+THY1-/lo cells marked committed excitatory and inhibitory neuronal lineages. Notably, we identify and functionally characterize a transcriptomically distinct THY1hiEGFRhiPDGFRA- bipotent glial progenitor cell (GPC), which is lineage-restricted to astrocytes and oligodendrocytes, but not to neurons. Our study provides a framework for the functional study of distinct cell types in human neurodevelopment.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Humanos , Células-Tronco Neurais/metabolismo , Neurônios , Diferenciação Celular/fisiologia , Neuroglia/metabolismo , Encéfalo , Astrócitos
17.
Neuropediatrics ; 54(2): 159-160, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36586402

Assuntos
Tremor , Humanos , Queixo , Síndrome
18.
Cell Rep ; 40(9): 111264, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044843

RESUMO

As our closest living relatives, non-human primates uniquely enable explorations of human health, disease, development, and evolution. Considerable effort has thus been devoted to generating induced pluripotent stem cells (iPSCs) from multiple non-human primate species. Here, we establish improved culture methods for chimpanzee (Pan troglodytes) and pig-tailed macaque (Macaca nemestrina) iPSCs. Such iPSCs spontaneously differentiate in conventional culture conditions, but can be readily propagated by inhibiting endogenous WNT signaling. As a unique functional test of these iPSCs, we injected them into the pre-implantation embryos of another non-human species, rhesus macaques (Macaca mulatta). Ectopic expression of gene BCL2 enhances the survival and proliferation of chimpanzee and pig-tailed macaque iPSCs within the pre-implantation embryo, although the identity and long-term contribution of the transplanted cells warrants further investigation. In summary, we disclose transcriptomic and proteomic data, cell lines, and cell culture resources that may be broadly enabling for non-human primate iPSCs research.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pan troglodytes , Animais , Macaca mulatta , Macaca nemestrina/genética , Proteômica
19.
Proc Natl Acad Sci U S A ; 119(29): e2203032119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858312

RESUMO

Colonial tunicates are marine organisms that possess multiple brains simultaneously during their colonial phase. While the cyclical processes of neurogenesis and neurodegeneration characterizing their life cycle have been documented previously, the cellular and molecular changes associated with such processes and their relationship with variation in brain morphology and individual (zooid) behavior throughout adult life remains unknown. Here, we introduce Botryllus schlosseri as an invertebrate model for neurogenesis, neural degeneration, and evolutionary neuroscience. Our analysis reveals that during the weekly colony budding (i.e., asexual reproduction), prior to programmed cell death and removal by phagocytes, decreases in the number of neurons in the adult brain are associated with reduced behavioral response and significant change in the expression of 73 mammalian homologous genes associated with neurodegenerative disease. Similarly, when comparing young colonies (1 to 2 y of age) to those reared in a laboratory for ∼20 y, we found that older colonies contained significantly fewer neurons and exhibited reduced behavioral response alongside changes in the expression of 148 such genes (35 of which were differentially expressed across both timescales). The existence of two distinct yet apparently related neurodegenerative pathways represents a novel platform to study the gene products governing the relationship between aging, neural regeneration and degeneration, and loss of nervous system function. Indeed, as a member of an evolutionary clade considered to be a sister group of vertebrates, this organism may be a fundamental resource in understanding how evolution has shaped these processes across phylogeny and obtaining mechanistic insight.


Assuntos
Evolução Biológica , Doenças Neurodegenerativas , Urocordados , Animais , Expressão Gênica , Doenças Neurodegenerativas/genética , Reprodução Assexuada , Urocordados/genética
20.
BMJ Case Rep ; 15(3)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361669

RESUMO

Isolated deep cerebral venous thrombosis (CVT), especially involving only the right thalamus, is one of the rarest forms of intracranial venous thrombosis in a child. The anatomy and flow patterns of the deep cerebral venous system are complex and usually, the thrombosis of the internal cerebral veins (ICV) results in thalamic infarction bilaterally. The focal infections, thalamic tumours and vascular malformations may have overlapping clinicoradiological patterns. The treating team should be able to recognise the atypical phenotypes of the deep CVT at the earliest, which can facilitate apt treatment and obviate the need for unnecessary investigations and interventions. We present a rare case of an isolated right thalamic acute venous infarct secondary to bilateral ICV thrombosis in a toddler who was successfully managed by timely diagnosis and with only conservative therapy.


Assuntos
Veias Cerebrais , Trombose Intracraniana , Trombose Venosa , Infarto Cerebral/complicações , Veias Cerebrais/patologia , Pré-Escolar , Humanos , Trombose Intracraniana/complicações , Tálamo/irrigação sanguínea , Tálamo/diagnóstico por imagem , Trombose Venosa/complicações , Trombose Venosa/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...